Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Psychiatry Res ; 319: 114969, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2240389

ABSTRACT

The long-term effects of COVID-19 on brain structure remain unclear. A prospective study was conducted to explore the changes in brain structure in COVID-19 survivors at one and two years after discharge (COVID-19one, COVID-19two). The difference in gray matter volume (GMV) was analyzed using the voxel-based morphometry method, and correlation analyses were conducted. The dynamic changes in clinical sequelae varied. The GMVs in the cerebellum and vermis were reduced in COVID-19one and COVID-19two, positively correlated with lymphocyte count, and negatively correlated with neutrophil count, neutrophil/lymphocyte ratio (COVID-19one), and systemic immune-inflammation index (COVID-19two). The decreased GMVs in the left middle frontal gyrus, inferior frontal gyrus of the operculum, right middle temporal gyrus, and inferior temporal gyrus returned to normal in COVID-19two. The decreased GMV in the left frontal lobe was negatively correlated with the Athens Insomnia Scale (AIS). The GMV in the left temporal lobe was aggravated in COVID-19two and positively correlated with C-reactive protein. In conclusion, GMV recovery coexisted with injury, which was associated with AIS and inflammatory factors. This may shed some light on the dynamic changes in brain structure and the possible predictors that may be related to GMV changes in COVID-19two.

2.
Theranostics ; 13(2): 724-735, 2023.
Article in English | MEDLINE | ID: covidwho-2203055

ABSTRACT

Background and purpose: Long COVID with regard to the neurological system deserves more attention, as a surge of treated patients are being discharged from the hospital. As the dynamic changes in white matter after two years remain unknown, this characteristic was the focus of this study. Methods: We investigated 17 recovered COVID-19 patients at two years after discharge. Diffusion tensor imaging, neurite orientation dispersion and density imaging were performed to identify white matter integrity and changes from one to two years after discharge. Data for 13 revisited healthy controls were collected as a reference. Subscales of the Wechsler Intelligence scale were used to assess cognitive function. Repeated-measures ANOVA was used to detect longitudinal changes in 17 recovered COVID-19 patients and 13 healthy controls after one-year follow-up. Correlations between diffusion metrics, cognitive function, and other clinical characteristics (i.e., inflammatory factors) were also analyzed. Results: Longitudinal analysis showed the recovery trends of large-scale brain regions, with small-scale brain region deterioration from one year to two years after SARS-CoV-2 infection. However, persistent white matter abnormalities were noted at two years after discharge. Longitudinal changes of cognitive function showed no group difference. But cross-sectional cognitive difference between recovered COVID-19 patients and revisited HCs was detected. Inflammation levels in the acute stage correlated positively with white matter abnormalities and negatively with cognitive function. Moreover, the more abnormal the white matter was at two years, the greater was the cognitive deficit present. Conclusion: Recovered COVID-19 patients showed longitudinal recovery trends of white matter. But also had persistent white matter abnormalities at two years after discharge. Inflammation levels in the acute stage may be considered predictors of cognition and white matter integrity, and the white matter microstructure acts as a biomarker of cognitive function in recovered COVID-19 patients. These findings provide an objective basis for early clinical intervention.


Subject(s)
COVID-19 , White Matter , Humans , Follow-Up Studies , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Brain/diagnostic imaging , Inflammation
3.
Radiology of Infectious Diseases ; 8(3):101-107, 2021.
Article in English | ProQuest Central | ID: covidwho-2118992

ABSTRACT

OBJECTIVE: Since the coronavirus disease 2019 (COVID-19) outbreak in Wuhan in 2019, the virus has spread rapidly. We investigated the clinical and computed tomography (CT) characteristics of different clinical types of COVID-19. MATERIALS AND METHODS: We retrospectively analyzed clinical and chest CT findings of 89 reverse transcription polymerase chain reaction confirmed cases from five medical centers in China. All the patients were classified into the common (n = 65), severe (n = 18), or fatal (n = 6) type. CT features included lesion distribution, location, size, shape, edge, density, and the ratio of lung lesions to extra-pulmonary lesions. A COVID-19 chest CT analysis tool (uAI-discover-COVID-19) was used to calculate the number of infections from the chest CT images. RESULTS: Fatal type COVID-19 is more common in older men, with a median age of 65 years. Fever was more common in the severe and fatal type COVID-19 patients than in the common type patients. Patients with fatal type COVID-19 were more likely to have underlying diseases. On CT examination, common type COVID-19 showed bilateral (68%), patchy (83%), ground-glass opacity (48%), or mixed (46%) lesions. Severe and fatal type COVID-19 showed bilateral multiple mixed density lesions (56%). The infection ratio (IR) increased in the common type (2.4 [4.3]), severe type (15.7 [14.3]), and fatal type (36.9 [14.2]). The IR in the inferior lobe of both lungs was statistically different from that of other lobes in common and severe type patients (P < 0.05). However, in the fatal type group, only the IR in the right inferior lung (RIL) was statistically different from that in the right superior lung(RUL), right middle lung (RML), and the left superior lung (LSL) (P < 0.05). CONCLUSION: The CT findings and clinical features of the various clinical types of COVID-19 pneumonia are different. Chest CT findings have unique characteristics in the different clinical types, which can facilitate an early diagnosis and evaluate the clinical course and severity of COVID-19.

4.
Brain ; 145(5): 1830-1838, 2022 06 03.
Article in English | MEDLINE | ID: covidwho-1594202

ABSTRACT

There is growing evidence that severe acute respiratory syndrome coronavirus 2 can affect the CNS. However, data on white matter and cognitive sequelae at the 1-year follow-up are lacking. Therefore, we explored these characteristics in this study. We investigated 22 recovered coronavirus disease 2019 (COVID-19) patients and 21 matched healthy controls. Diffusion tensor imaging, diffusion kurtosis imaging and neurite orientation dispersion and density imaging were performed to identify white matter changes, and the subscales of the Wechsler Intelligence scale were used to assess cognitive function. Correlations between diffusion metrics, cognitive function and other clinical characteristics were then examined. We also conducted subgroup analysis based on patient admission to the intensive care unit. The corona radiata, corpus callosum and superior longitudinal fasciculus had a lower volume fraction of intracellular water in the recovered COVID-19 group than in the healthy control group. Patients who had been admitted to the intensive care unit had lower fractional anisotropy in the body of the corpus callosum than those who had not. Compared with the healthy controls, the recovered COVID-19 patients demonstrated no significant decline in cognitive function. White matter tended to present with fewer abnormalities for shorter hospital stays and longer follow-up times. Lower axonal density was detected in clinically recovered COVID-19 patients after 1 year. Patients who had been admitted to the intensive care unit had slightly more white matter abnormalities. No significant decline in cognitive function was found in recovered COVID-19 patients. The duration of hospital stay may be a predictor for white matter changes at the 1-year follow-up.


Subject(s)
COVID-19 , White Matter , Anisotropy , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Follow-Up Studies , Humans , White Matter/diagnostic imaging
5.
Neural Regen Res ; 17(7): 1576-1581, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1575953

ABSTRACT

Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019 (COVID-19) exhibit anxiety, depression, and altered brain microstructure, their long-term physical problems, neuropsychiatric sequelae, and changes in brain function remain unknown. This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19 (8 males and 11 females, aged 54.2 ± 8.7 years). Fatigue and myalgia were persistent symptoms at the 1-year follow-up. The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls (7 males and 18 females, aged 50.5 ± 11.6 years), COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation (ALFF) values in the left precentral gyrus, middle frontal gyrus, inferior frontal gyrus of operculum, inferior frontal gyrus of triangle, insula, hippocampus, parahippocampal gyrus, fusiform gyrus, postcentral gyrus, inferior parietal angular gyrus, supramarginal gyrus, angular gyrus, thalamus, middle temporal gyrus, inferior temporal gyrus, caudate, and putamen. ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores, and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization. The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors. This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University (approval No. 2020S004) on March 19, 2020.

6.
Pediatrics ; 148(5)2021 11.
Article in English | MEDLINE | ID: covidwho-1357452

ABSTRACT

OBJECTIVES: In this study, we aimed to characterize the clinical presentation, short-term prognosis, and myocardial tissue changes as noted on cardiovascular magnetic resonance (CMR) or cardiac MRI in pediatric patients with coronavirus disease 2019 vaccination-associated myocarditis (C-VAM). METHODS: In this retrospective multicenter study across 16 US hospitals, patients <21 years of age with a diagnosis of C-VAM were included and compared with a cohort with multisystem inflammatory syndrome in children. Younger children with C-VAM were compared with older adolescents. RESULTS: Sixty-three patients with a mean age of 15.6 years were included; 92% were male. All had received a messenger RNA vaccine and, except for one, presented after the second dose. Four patients had significant dysrhythmia; 14% had mild left ventricular dysfunction on echocardiography, which resolved on discharge; 88% met the diagnostic CMR Lake Louise criteria for myocarditis. Myocardial injury as evidenced by late gadolinium enhancement on CMR was more prevalent in comparison with multisystem inflammatory syndrome in children. None of the patients required inotropic, mechanical, or circulatory support. There were no deaths. Follow-up data obtained in 86% of patients at a mean of 35 days revealed resolution of symptoms, arrhythmias, and ventricular dysfunction. CONCLUSIONS: Clinical characteristics and early outcomes are similar between the different pediatric age groups in C-VAM. The hospital course is mild, with quick clinical recovery and excellent short-term outcomes. Myocardial injury and edema are noted on CMR. Close follow-up and further studies are needed to understand the long-term implications and mechanism of these myocardial tissue changes.


Subject(s)
COVID-19 Vaccines/adverse effects , Myocarditis/diagnosis , Myocarditis/etiology , Adolescent , Cardiac Imaging Techniques , Female , Humans , Magnetic Resonance Imaging , Male , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL